56 research outputs found

    Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Chloroflexus aurantiacus </it>is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, <it>Chloroflexi </it>species are the earliest branching bacteria capable of photosynthesis, and <it>Cfl. aurantiacus </it>has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. <it>Cfl. aurantiacus </it>contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.</p> <p>Methods</p> <p>The complete genomic sequence of <it>Cfl. aurantiacus </it>has been determined, analyzed and compared to the genomes of other photosynthetic bacteria.</p> <p>Results</p> <p>Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in <it>Cfl. aurantiacus </it>to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of <it>Cfl. aurantiacus</it>. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO<sub>2</sub>-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in <it>Cfl. aurantiacus </it>are discussed. Some features of the <it>Cfl. aurantiacus </it>genome are compared with those of the <it>Roseiflexus castenholzii </it>genome. <it>Roseiflexus castenholzii </it>is a recently characterized FAP bacterium and phylogenetically closely related to <it>Cfl. aurantiacus</it>. According to previous reports and the genomic information, perspectives of <it>Cfl. aurantiacus </it>in the evolution of photosynthesis are also discussed.</p> <p>Conclusions</p> <p>The genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph <it>Cfl. aurantiacus </it>has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis.</p

    Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans

    Get PDF
    Author Posting. © American Society for Microbiology, 2008. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 74 (2008): 1145-1156, doi:10.1128/AEM.01844-07.Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory, University of California, under contract W-7405-ENG-48. Genome closure was funded in part by a USF Innovative Teaching Grant (K.M.S.). S.M.S. received partial support through a fellowship from the Hanse Wissenschaftskolleg in Delmenhorst, Germany (http://www.h-w-k.de), and NSF grant OCE-0452333. K.M.S. is grateful for support from NSF grant MCB-0643713. M.H. was supported by a WHOI postdoctoral scholarship. M.G.K. was supported in part by incentive funds provided by the UofL-EVPR office, the KY Science and Engineering Foundation (KSEF-787-RDE-007), and the National Science Foundation (EF-0412129)

    Prodigal: prokaryotic gene recognition and translation initiation site identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals.</p> <p>Results</p> <p>With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives.</p> <p>Conclusion</p> <p>We built a fast, lightweight, open source gene prediction program called Prodigal <url>http://compbio.ornl.gov/prodigal/</url>. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.</p

    Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T)

    Get PDF
    Polynucleobacter necessarius subsp. asymbioticus strain QLW-P1DMWA-1T is a planktonic freshwater bacterium affiliated with the family Burkholderiaceae (class Betaproteobacteria). This strain is of interest because it represents a subspecies with cosmopolitan and ubiquitous distribution in standing freshwater systems. The 16S-23S ITS genotype represented by the sequenced strain comprised on average more than 10% of bacterioplankton in its home habitat. While all strains of the subspecies P. necessarius asymbioticus are free-living freshwater bacteria, strains belonging to the only other subspecies, P. necessarius subsp. necessarius are obligate endosymbionts of the ciliate Euplotes aediculatus. The two subspecies of P. necessarius are the instances of two closely related subspecies that differ in their lifestyle (free-living vs. obligate endosymbiont), and they are the only members of the genus Polynucleobacter with completely sequenced genomes. Here we describe the features of P. necessarius subsp. asymbioticus, together with the complete genome sequence and annotation. The 2,159,490 bp long chromosome with a total of 2,088 protein-coding and 48 RNA genes is the first completed genome sequence of the genus Polynucleobacter to be published and was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2006

    The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

    Get PDF
    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome

    D-ribose-5-phosphate isomerase from spinach: heterologous1

    No full text
    A cDNA encoding spinach chloroplastic ribose-5-phosphate isomerase (RPI) was cloned and overexpressed in Escherichia coli, and a purification scheme for the recombinant enzyme was developed. The purified recombinant RPI is a homodimer of 25-kDa subunits and shows kinetic properties similar to those of the homodimeric enzyme isolated from spinach leaves (A. C. Rutner, 1970, Biochemistry 9, 178 -184). Phosphate, used as a buffer in previous studies, is a competitive inhibitor of RPI with a K i of 7.9 mM. D-Arabinose 5-phosphate is an effective inhibitor, while Dxylulose-5 phosphate is not, indicating that the configuration at carbon-3 contributes to substrate recognition. Although D-arabinose 5-phosphate binds to RPI, it is not isomerized, demonstrating that the configuration at carbon-2 is crucial for catalysis. Alignment of RPI sequences from diverse sources showed that only 11 charged amino acid residues of the 236-residue subunit are conserved. The possible function of four of these residues was examined by site-directed mutagenesis. As the catalyst for the interconversion of D-ribose 5-phosphate and D-ribulose 5-phosphate, RPI 5 (EC 5.3.1.6), plays an essential role in the Calvin cycle of photosynthesis and in the oxidative pentose phosphate pathway of both photosynthetic and nonphotosynthetic organisms (1). RPI, in concert with ribulose-5-phosphate epimerase, facilitates partitioning of pentose phosphates between these two pathways in photosynthetic organisms, depending on metabolic needs and the redox status of cells. D-Ribose 5-phosphate itself is the substrate for the synthesis of phosphoribosyl pyrophosphate, which serves as a precursor for histidine, tryptophan, and nucleotides (2), and D-ribulose 5-phosphate in turn is a precursor for riboflavin (3)
    corecore